Mathematics Of Public Key Cryptography Steven Galbraith Pdf Merge
Posted on
Mathematics Of Public Key Cryptography Steven Galbraith Pdf Merge 8,4/10 4834 reviews
- Buchmann J.: Reducing lattice bases by means of approximations. Algorithmic number theory, Ithaca, NY, 1994. Lecture Notes in Computer Science, vol. 877, pp. 160–168. Springer, Berlin (1994).Google Scholar
- Coglianese M., Goi B.-M.: MaTRU: a new NTRU-based cryptosystem. Indocrypt 2005. Lecture Notes in Computer Science, vol. 3797, pp 232–243. (2005).Google Scholar
- Conway J.H., Sloane N.J.A.: Sphere packings, lattices and groups. In: Grundlehren der Mathematischen Wissenschaften, 3rd edn., vol. 290. Springer-Verlag, New York (1999).Google Scholar
- Coppersmith D., Shamir A.: Lattice attacks on NTRU. Advances in cryptology—EUROCRYPT 1997. Lecture Notes in Computer Science, vol. 1233, pp. 52–61. Springer, Berlin (1997).Google Scholar
- Gaborit P., Ohler J., Sole P.: CTRU, A polynomial analogue of NTRU. NTRU Technical Report #Inria RR-4621 (2006).Google Scholar
- Hirschhorn P., Hoffstein J., Howgrave-Graham N., Whyte W.: Choosing NTRUEncrypt parameters in light of combined lattice reduction and MITM approaches. In: Proceedings of the 7th international conference on applied cryptography and network security, Paris-Rocquencourt, France. Lecture Notes In Computer Science, vol. 5536, pp. 437–455. (2009).Google Scholar
- Hoffstein J., Pipher J., Silverman J.H.: NTRU, a ring-based public-key cryptosystem. Algorithmic number theory, Portland, OR, 1998. Lecture Notes in Computer Science, vol. 1423, pp. 267–288. Springer, Berlin (1996).Google Scholar
- Hoffstein J., Pipher J., Silverman J.: An introduction to mathematical cryptography. In: Undergraduate Texts in Mathematics. Springer, New York (2008).Google Scholar
- Howgrave-Graham N.: Computational mathematics inspired by RSA. PhD thesis, University of Bath (1998).Google Scholar
- Howgrave-Graham N., Silverman J.H., Whyte W.: Choosing parameter sets for NTRUEncrypt with NAEP and SVES-3. Topics in cryptology—CT-RSA 2005. Lecture Notes in Computer Science, vol. 3376, pp. 118–135. Springer, Berlin (2005).Google Scholar
- Kouzmenko R.: Generalizations of the NTRU cryptosystem. Diploma Project, École Polytechnique Fédérale de Lausanne, (2005–2006).Google Scholar
- Lemmermeyer F.: The Euclidean algorithm in algebraic number fields. Exposition. Math. 13, 385–416 (1995)zbMATHMathSciNetGoogle Scholar
- Masley J.M., Montgomery H.L.: Cyclotomic fields with unique factorization. J. Reine Angew. Math. 248–256 (1976).Google Scholar
- Rhai T.-S.: A characterization of polynomial domains over a field. Am. Math. Mon. 69, 984–986 (1962)CrossRefMathSciNetGoogle Scholar
Physica…
Cambridge Tracts in Mathematics $110.00: Hb: 978-1-107-01614-9: 432 pp. Filtering Complex Turbulent Systems Andrew J. Majda and John Harlim $115.00: Hb: 978-1-107-01666-8: 368 pp. Mathematics of Public Key Cryptography Steven D. Galbraith $70.00: Hb: 978-1-107-01392-6: 632 pp. Algebraic Shift Register Sequences Mark Goresky and Andrew Klapper. An Overview of Public Key Cryptography Martin E. Hellman With a public key cryptosystem, the key used to encipher a message can be made public without compromising the secrecy of a different key needed to decipher that message. COMMERCIAL NEED FOR ENCRYPTION Cryptography has been of great importance to the mil.