Mathematics Of Public Key Cryptography Steven Galbraith Pdf Merge

Posted on
Mathematics Of Public Key Cryptography Steven Galbraith Pdf Merge 8,4/10 4834 reviews
  1. Buchmann J.: Reducing lattice bases by means of approximations. Algorithmic number theory, Ithaca, NY, 1994. Lecture Notes in Computer Science, vol. 877, pp. 160–168. Springer, Berlin (1994).Google Scholar
  2. Coglianese M., Goi B.-M.: MaTRU: a new NTRU-based cryptosystem. Indocrypt 2005. Lecture Notes in Computer Science, vol. 3797, pp 232–243. (2005).Google Scholar
  3. Conway J.H., Sloane N.J.A.: Sphere packings, lattices and groups. In: Grundlehren der Mathematischen Wissenschaften, 3rd edn., vol. 290. Springer-Verlag, New York (1999).Google Scholar
  4. Coppersmith D., Shamir A.: Lattice attacks on NTRU. Advances in cryptology—EUROCRYPT 1997. Lecture Notes in Computer Science, vol. 1233, pp. 52–61. Springer, Berlin (1997).Google Scholar
  5. Gaborit P., Ohler J., Sole P.: CTRU, A polynomial analogue of NTRU. NTRU Technical Report #Inria RR-4621 (2006).Google Scholar
  6. Hirschhorn P., Hoffstein J., Howgrave-Graham N., Whyte W.: Choosing NTRUEncrypt parameters in light of combined lattice reduction and MITM approaches. In: Proceedings of the 7th international conference on applied cryptography and network security, Paris-Rocquencourt, France. Lecture Notes In Computer Science, vol. 5536, pp. 437–455. (2009).Google Scholar
  7. Hoffstein J., Pipher J., Silverman J.H.: NTRU, a ring-based public-key cryptosystem. Algorithmic number theory, Portland, OR, 1998. Lecture Notes in Computer Science, vol. 1423, pp. 267–288. Springer, Berlin (1996).Google Scholar
  8. Hoffstein J., Pipher J., Silverman J.: An introduction to mathematical cryptography. In: Undergraduate Texts in Mathematics. Springer, New York (2008).Google Scholar
  9. Howgrave-Graham N.: Computational mathematics inspired by RSA. PhD thesis, University of Bath (1998).Google Scholar
  10. Howgrave-Graham N., Silverman J.H., Whyte W.: Choosing parameter sets for NTRUEncrypt with NAEP and SVES-3. Topics in cryptology—CT-RSA 2005. Lecture Notes in Computer Science, vol. 3376, pp. 118–135. Springer, Berlin (2005).Google Scholar
  11. Kouzmenko R.: Generalizations of the NTRU cryptosystem. Diploma Project, École Polytechnique Fédérale de Lausanne, (2005–2006).Google Scholar
  12. Lemmermeyer F.: The Euclidean algorithm in algebraic number fields. Exposition. Math. 13, 385–416 (1995)zbMATHMathSciNetGoogle Scholar
  13. Masley J.M., Montgomery H.L.: Cyclotomic fields with unique factorization. J. Reine Angew. Math. 248–256 (1976).Google Scholar
  14. Rhai T.-S.: A characterization of polynomial domains over a field. Am. Math. Mon. 69, 984–986 (1962)CrossRefMathSciNetGoogle Scholar

Physica…

Cryptography

Cambridge Tracts in Mathematics $110.00: Hb: 978-1-107-01614-9: 432 pp. Filtering Complex Turbulent Systems Andrew J. Majda and John Harlim $115.00: Hb: 978-1-107-01666-8: 368 pp. Mathematics of Public Key Cryptography Steven D. Galbraith $70.00: Hb: 978-1-107-01392-6: 632 pp. Algebraic Shift Register Sequences Mark Goresky and Andrew Klapper. An Overview of Public Key Cryptography Martin E. Hellman With a public key cryptosystem, the key used to encipher a message can be made public without compromising the secrecy of a different key needed to decipher that message. COMMERCIAL NEED FOR ENCRYPTION Cryptography has been of great importance to the mil.